Topic 6

CMOS Static & Dynamic Logic Gates

Peter Cheung Department of Electrical & Electronic Engineering Imperial College London

> URL: www.ee.ic.ac.uk/pcheung/ E-mail: p.cheung@ic.ac.uk

NMOS Transistors in Series/Parallel Connection

- Transistors can be thought as a switch controlled by its gate signal
- NMOS switch closes when switch control input is high

NMOS Transistors pass a "strong" 0 but a "weak" 1

PMOS Transistors in Series/Parallel Connection

PMOS switch closes when switch control input is low

PMOS Transistors pass a "strong" 1 but a "weak" 0

Static CMOS Circuit

- Basic CMOS combinational circuits consist of:
 - Complementary pull-up (p-type) and pull-down (n-type)

Static CMOS

To build a logic gate $\overline{f}(x_1, ..., x_n)$, need to build two switch networks:

Example Gate: NAND

PUN: $\mathbf{F} = \mathbf{A} + \mathbf{B} = \mathbf{AB} \Rightarrow$ Conduction to \mathbf{V}_{DD}

$$G(In_1, In_2, In_3, \ldots) \equiv F(\overline{In_1}, \overline{In_2}, \overline{In_3}, \ldots)$$

Example Gate: NOR

Complex Gate

- We can form complex combinational circuit function in a complementary tree. The procedure to construct a complementary tree is as follow:-
 - Express the boolean expression in an inverted form
 - For the n-transistor tree, working from the innermost bracket to the outer-most term, connect the OR term transistors in parallel, and the AND term transistors in series
 - For the p-transistor tree, working from the innermost bracket to the outer-most term, connect the OR term transistors in series, and the AND term transistors in parallel

Example Gate: COMPLEX CMOS GATE

1) High noise margins

- V_{OH} and V_{OL} are at V_{DD} and GND, respectively.
- 2) No static power consumption There never exists a direct path between V_{DD} and V_{SS} (GND) in steady-state mode
- 3) Comparable rise and fall times: (under the appropriate scaling conditions)

Transistor Sizing

- for symmetrical response (dc, ac)
- for performance

Input Dependent

Focus on worst-case

• assume $\mu_n = 2^* \mu_p$ (i.e. n-channel transistors has 2 times the transconductance as that of p-channel.)

Propagation Delay Analysis - The Switch Model

(assuming that C_L dominates!)

What is the Value of *R*_{on}?

- Depends strongly on the operating region
- For hand analysis use a fixed value of R which it the average of the two end points of the transition
- Similar to the previous approach of averaging currents

EXAMPLE: For t_{pHL} for an inverter, the R_{on} is:

$$R_{on} = \frac{1}{2} (R_{NMOS}(V_{out} = V_{DD}) + R_{NMOS}(V_{out} = V_{DD}/2))$$
$$= \frac{1}{2} \left(\left(\frac{V_{DS}}{I_D} \right)_{V_{out}} = V_{DD} + \left(\frac{V_{DS}}{I_D} \right)_{V_{out}} = V_{DD}/2 \right)$$

Analysis of Propagation Delay

2-input NAND

1. Assume *R_n=R_p*= resistance of minimum sized NMOS inverter

- 2. Determine "Worst Case Input" transition (Delay depends on input values)
- 3. Example: *t_{pLH}* for 2input NAND
 - Worst case when only ONE PMOS Pulls up the output node
 - For 2 PMOS devices in parallel, the resistance is lower

$$\mathbf{t}_{pLH} = \mathbf{0.69} \mathbf{R}_p \mathbf{C}_L$$

- 4. Example: t_{pHL} for 2input NAND
 - Worst case : TWO NMOS in series

 $t_{pHL} = 0.69(2R_n)C_L$

Design for Worst Case

Fast Complex Gate - Design Techniques

• Transistor Sizing:

As long as Fan-out Capacitance dominates

• Progressive Sizing:

Fast Complex Gate - Design Techniques (2)

Transistor Ordering

Fast Complex Gate - Design Techniques (3)

Improved Logic Design

Fast Complex Gate - Design Techniques (4)

• Buffering: Isolate Fan-in from Fan-out

Example: Full Adder

 $C_o = AB + C_i(A+B)$

28 transistors

A Revised Adder Circuit

24 transistors

Ratioed Logic

Goal: to reduce the number of devices over complementary CMOS

Ratioed Logic

• N transistors + Load

•
$$\mathbf{V}_{\mathbf{OH}} = \mathbf{V}_{\mathbf{DD}}$$

•
$$\mathbf{V}_{OL} = \frac{\mathbf{R}_{PN}}{\mathbf{R}_{PN} + \mathbf{R}_{L}}$$

- Assymetrical response
- Static power consumption

Active Loads

Psuedo NMOS

- Disadvantages of previous circuit :
 - Almost twice as many transistors as equivalent NMOS implementation.
 - If there are too many series transistors in the tree, switching speed is reduced.
- Try a pseudo NMOS circuit:-

- The pull-up p-channel transistor is always conducting.
 - Disadvantages: high d.c. dissipation & slow rise time.

Pseudo-NMOS NAND Gate

 $C_{L,pseudo} = 0.5 C_{L,CMOS}$ (Fan-out of 1)

Improved Loads (1)

Dual Cascode Voltage Switch Logic (DCVSL)

Example

XOR-NXOR gate

Dynamic Logic

- There is another class of logic gates which relies on the use of a clock signal. This class of circuit is known as *dynamic circuits*. The clock signal is used to divide the gate operation into two halves. In the first half, the output node is *pre-charged* to a high or low logic state. In the second half of a clock cycle, the circuit *evaluates* the correct output state.
- When Ø is low, Z is charged to high. When Ø is high, n logic block evaluates input, and conditionally discharges Z. This circuit adds series resistance to the pull-down n-channel transistor, therefore the fall time is increased slightly.
- This circuit is *dynamic* because during evaluation, the output high level at Z is maintained by the stray capacitance at the output node. If Ø stays high (i.e. evaluation period) for a long time, Z may eventually discharge to a low logic level.

Problem with Cascading Dynamic Logic

- Problem with cascading such as a circuit:-
 - Inputs can only be changed when Ø is low and must be stable when Ø is high.
 - When Ø is low, both P1 and P2 are precharged to a high voltage. However when Ø is high, delay through on the output P1 may erroneously discharge P2.

CMOS Domino Logic

- Solution to the above problem:-
 - Add an inverter to ensure that the output is low during precharge, and prevent the next stage from evaluating, until the current stage has finished evaluation.
 - This ensures that each stage (at the output of the inverter) will make at most a single transition from 0 -> 1.
 - When many stages are cascaded, evaluation proceeds from one stage to the next similar to dominos falling one after another.
- Disadvantages of domino logic:-
 - Only non-inverting logic is possible, i.e. output also high active
 - Each gate needs an inverter; hence more transistors
 - Suffer from charge sharing effect (considered later)

Alternating dynamic logic (1)

- Another possible scheme is to use alternate n and p logic blocks as shown below.
- In this scheme, each alternate stage is pre-charged high and low. Each stage uses alternate n and p transistors to implement the gate function. Stage 1 makes at most one high to low transition, while stage 2 makes at most one low to high transition for each evaluation. Since the p logic block will only change state if input is a low, this circuit behaves like the domino logic.

Alternating dynamic logic (2)

 A slight variation of this circuit is show below, where an inverter is added per stage to increase flexibility. Here each stage can drive either n or p blocks and both low active and high active logic can be implemented.

Making a Dynamic Gate static

- Finally, by adding a feedback pullup, we can make the circuit static.
- This circuit turns the originally *dynamic* gate into a *static* gate because the feedback transistor can maintain a logic high level at the node Z for an indefinite length of time. Without this feedback transistor, the charge stored at the node Z will eventually leak away.

Pass Transistor Logic

- An alternative design style is to use pass transistors. The following is an example of a multiplexer.
- Complementary transmission gates are used here because n-channel pass transistors will pass 0 logic level well but, 1 logic level poorly. This is because in order for the n-transistor to be **ON**, V_{gs} must be greater than V_{th}. Therefore each series n transistor will degrade the 1 logic level by V_{th}. The opposite is true with p-channel pass transistors: 0 logic level is passed poorly.

Pass Transistor Logic with feedback

 This circuit uses only n transistors, therefore it is economical on transistor count. In order to ensure that the 1 logic level is passed properly, a p pull-up transistor is added. This restores the 1 logic level at the input of the inverter.

Pass Transistor XOR gate

 Pass transistor logic can sometimes be very economical in implementing logic functions. For example, an XOR gate can be implemented with just two transmission gates:-

4-input NAND Gate

Standard Cell Layout Methodology

Two Versions of (a+b).c

